Cyclic peptides arising by evolutionary parallelism via asparaginyl-endopeptidase-mediated biosynthesis.
نویسندگان
چکیده
The cyclic miniprotein Momordica cochinchinensis Trypsin Inhibitor II (MCoTI-II) (34 amino acids) is a potent trypsin inhibitor (TI) and a favored scaffold for drug design. We have cloned the corresponding genes and determined that each precursor protein contains a tandem series of cyclic TIs terminating with the more commonly known, and potentially ancestral, acyclic TI. Expression of the precursor protein in Arabidopsis thaliana showed that production of the cyclic TIs, but not the terminal acyclic TI, depends on asparaginyl endopeptidase (AEP) for maturation. The nature of their repetitive sequences and the almost identical structures of emerging TIs suggest these cyclic peptides evolved by internal gene amplification associated with recruitment of AEP for processing between domain repeats. This is the third example of similar AEP-mediated processing of a class of cyclic peptides from unrelated precursor proteins in phylogenetically distant plant families. This suggests that production of cyclic peptides in angiosperms has evolved in parallel using AEP as a constraining evolutionary channel. We believe this is evolutionary evidence that, in addition to its known roles in proteolysis, AEP is especially suited to performing protein cyclization.
منابع مشابه
Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase
Cyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides. Here we repo...
متن کاملThematic minireview series on circular proteins.
Circular proteins have now been discovered in all kingdoms of life and are characterized by their exceptional stability and the diversity of their biological activities, primarily in the realm of host defense functions. This thematic minireview series provides an overview of the distribution, evolution, activities, and biological synthesis of circular proteins. It also reviews approaches that b...
متن کاملStructural basis of ribosomal peptide macrocyclization in plants
Constrained, cyclic peptides encoded by plant genes represent a new generation of drug leads. Evolution has repeatedly recruited the Cys-protease asparaginyl endopeptidase (AEP) to perform their head-to-tail ligation. These macrocyclization reactions use the substrates amino terminus instead of water to deacylate, so a peptide bond is formed. How solvent-exposed plant AEPs macrocyclize is poorl...
متن کاملSuccinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins.
Nonenzymatic intramolecular reactions can result in the deamidation, isomerization, and racemization of protein and peptide asparaginyl and aspartyl residues via succinimide intermediates. To understand the sequence dependence of these reactions, we measured the rate of succinimide formation in a series of synthetic peptides at pH 7.4. These peptides (Val-Tyr-Pro-X-Y-Ala) contained an internal ...
متن کاملAmbuic acid inhibits the biosynthesis of cyclic peptide quormones in gram-positive bacteria.
Quorum sensing is a cell-density-dependent regulatory system in gram-positive bacteria and is often regulated by cyclic peptides called "quormones," which function as extracellular communication signals. With an aim to discover an antipathogenic agent targeting quorum sensing in gram-positive bacteria, we screened 153 samples of fungal butanol extracts with the guidance of the inhibition of quo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 24 7 شماره
صفحات -
تاریخ انتشار 2012